skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Puthenpurayil, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. The efficient light-driven fuel production from homogeneous photocatalytic systems is one promising avenue towards an alternative energy economy. However, electron transfer from a conventional photosensitizer to a catalyst is short-range and necessitates spatial proximity between them. Here we show that energetic hot electrons generated by Mn-doped semiconductor quantum dots (QDs) allow for long-range sensitization of Ni(cyclam)-based molecular catalysts, enabling photocatalytic reduction of CO 2 to CO without requiring chemical linkages between the QDs and catalyst molecules. Our results demonstrate the potential of hot electron sensitization in simplifying the design of hybrid catalyst systems while improving photocatalytic activity. 
    more » « less
  3. null (Ed.)